Equisingularity classes of birational projections of normal singularities to a plane
نویسندگان
چکیده
Given a birational normal extension O of a two-dimensional local regular ring (R,m), we describe all the equisingularity types of the complete m-primary ideals J in R whose blowing-up X = BlJ(R) has some point Q whose local ring OX,Q is analytically isomorphic to O.
منابع مشابه
On the Exceptional Locus of the Birational Projections of a Normal Surface Singularity into a Plane
Given a normal surface singularity (X,Q) and a birational morphism to a nonsingular surface π : X → S, we investigate the local geometry of the exceptional divisor L of π. We prove that the dimension of the tangent space to L at Q equals the number of exceptional components meeting at Q. Consequences relative to the existence of such birational projections contracting a prescribed number of irr...
متن کاملLipschitz Geometry of Complex Surfaces: Analytic Invariants and Equisingularity
We prove that the outer Lipschitz geometry of the germ of a normal complex surface singularity determines a large amount of its analytic structure. In particular, it follows that any analytic family of normal surface singularities with constant Lipschitz geometry is Zariski equisingular. We also prove a strong converse for families of normal complex hypersurface singularities in C3: Zariski equ...
متن کاملEquisingularity at the Normalisation
We look at topological equisingularity of a holomorphic family of reduced mapping germs ft : (C , O) → C over a contractible base T having non-isolated singularities, by means of their normalisations. The relation between surfaces in C with non-isolated singularities and normal surface singularities via the normalisation is a very convenient way of exchanging information between both categories...
متن کاملEquisingularity and Simultaneous Resolution of Singularities
Zariski defined equisingularity on an n-dimensional hypersurface V via stratification by “dimensionality type,” an integer associated to a point by means of a generic local projection to affine n-space. A possibly more intuitive concept of equisingularity can be based on stratification by simultaneous resolvability of singularities. The two approaches are known to be equivalent for families of ...
متن کاملReal Congruence of Complex Matrix Pencils and Complex Projections of Real Veronese Varieties
Quadratically parametrized maps from a real projective space to a complex projective space are constructed as projections of the Veronese embedding. A classification theorem relates equivalence classes of projections to real congruence classes of complex symmetric matrix pencils. The images of some low-dimensional cases include certain quartic curves in the Riemann sphere, models of the real pr...
متن کامل